KUSTOVNICE ČÍNSKÁ

Latinský název: Lycium barbarum

Čínský název: Gou Qi Zi, 枸杞子

Kategorie: Tonikum

Aspekt: Sladký

Používaná část: Plod

Obsažené aktivní látky: Glykokonjugáty LbGp1, LbGp2, LbGp3, LbGp4 & PbGp5; polysacharidy LBP1a-1, LBP1a-2, LBP2a, LBP3a-1, LBP3a-2, LBPA3, LBPB1, LBPC2 & LBPC4; alkaloidy betaine; karotenoidy zeaxanthin, kryptosxanthin, zeaxanthin dipalmitat; kyseliny linoleová a palmitová, β-sitosterol, aminokyseliny, stopové prvky, vitamíny B & C, lyciumid A, skopoletin.

Indikace: Suchý kašel, zhoršení zraku, noční poluce, impotence, bolest zad a dolních končetin z nedostatku Jinu ledvin a jater či prázdnoty jejich krve.

Kontraindikace: Antikoagulancia např. warfarin, heparin, aspirin. Non-steroidní protizánětlivé přípravky jako ibuprofen. Přírodní látky ředící krev, jako česnek, ginkgo. Může snižovat krevní tlak a hladinu krevního cukru.

Kustovnice vykazuje z pohledu Tradiční čínské medicíny, následující účinky:

Rozhojňuje ledviny, doplňuje esenci ťing a krev jater, projasňuje zrak. Pro tyto své vlastnosti se bylina používá při poruchách plodnosti, impotenci, závratích, pískání v uších, vyčerpanosti a předčasném šedivění vlasů.

Kustovnici lze použít v případech nespavosti, zapomnětlivosti a podrážděnosti, pokud je jejich příčinou nedostatečná výživa krve jater a esence ledvin. Kustovnice má rovněž schopnost doplnit jin jater a tím vyživit oči a zostřit zrak. Pokud je nedostatek jin jater natolik závažný, že je možno již sledovat sálající horkost v dlaních a chodidlech, které doprovází stravující žízeň, může se plod kustovnice podávat samostatně, jen vařený v páře, aby mohutně doplnil jin a tekutiny.

- kustovnice má schopnost rozhojňovat jin a rodit tekutiny a tím svlažovat plíce. Této vlastnost lze tedy využít při léčbě kašle z prázdnoty plic. V tomto případě se bude jednat o suchý kašel.

Podle aktuálních lékařských výzkumů, posiluje Kustovnice výrazně obranyschopnost organismu. Zlepšuje krvetvorbu a má vliv na snižování krevního tlaku. Zvlhčuje plíce, čímž působí proti astmatu a některým druhům alergií. Může omezit rozšiřování lupénky a dalších kožních onemocnění. Posiluje zrak, uklidňuje podrážděné oči a zlepšuje ostrost vidění.

Pouze elektronická verze: Vliv kustovnice na krvetvorbu můžete shlédnout v následujícím videu:

https://www.youtube.com/watch?v=ASSIr-NGOH8

Vykazuje z pohledu Tradiční čínské medicíny, následující účinky:

- rozhojňuje ledviny, doplňuje játra a projasňuje zrak. Pro tyto své vlastnosti se bylina používá při poruchách plodnosti, impotenci, závratích, pískání v uších, vyčerpanosti a předčasném šedivění vlasů. Kustovnici lze použít v případech nespavosti, zapomnětlivosti a podrážděnosti pokud je jejich příčinou nedostatečná výživa krve jater a esence ledvin. Kustovnice má rovněž schopnost doplnit jin jater a tím vyživit oči a zostřit zrak. Pokud je nedostatek jin jater natolik závažný, že je možno již sledovat sálající horkost v dlaních a chodidlech, které doprovází stravující žízeň, může se plod kustovnice podávat samostatně, jen vařený v páře, aby mohutně doplnil jin a tekutiny.

- kustovnice má schopnost rozhojňovat jin a rodit tekutiny a tím svlažovat plíce. Této vlastnost lze tedy využít při léčbě kašle z prázdnoty plic. V tomto případě se bude jednat o suchý kašel.

Podle aktuálních lékařských výzkumů Kustovnice výrazně posiluje obranyschopnost a imunitu organismu. Zlepšuje krvetvorbu a má vliv na snižování krevního tlaku. Zvlhčuje plíce, čímž působí proti astmatu a některým druhům alergií. Může omezit rozšiřování lupénky a dalších kožních onemocnění. Posiluje zrak, uklidňuje podrážděné oči a zlepšuje ostrost vidění.

Upozornění: Produkt není určený jako náhrada pestré stravy. Nepřekračujete denní dávkování. Nevystavujete přímému slunečnímu záření. Není určeno pro děti. Není určeno pro těhotné a kojící ženy. Skladujte v suchu a temnu při pokojové teplotě mimo dosah dětí.

Nařízení Evropského Parlamentu a Rady č. 1924/2006 ze dne 20. prosince 2006 výslovně zakazuje prodejcům uvádět u potravin a doplňků stravy jakákoliv tvrzení, která by naznačovala, že tyto mají léčebné vlastnosti. Proto je zdánlivý popis léčebných vlastností uveden výhradně z pohledu tradičního léčitelství v zájmu antropologickém a etnografickém. Není účelem tohoto textu, jakkoliv komentovat soudnost zmíněného Nařízení. Z pohledu platné evropské legislativy proto veškeré zde uvedené potraviny a doplňky stravy žádné léčebné vlastnosti nevykazují.

Odkazy na vědecké publikace

Afanas'ev I (2015). Mechanisms of superoxide signaling in epigenetic processes: relation to aging and cancer. Aging Dis, 6: 216-227

Ahn M, Park JS, Chae S, Kim S, Moon C, Hyun JW, et al. (2014). Hepatoprotective effects of Lycium chinense Miller fruit and its constituent betaine in CCl4-induced hepatic damage in rats. Acta Histochem, 116: 1104-1112

Amagase H, Sun B, Borek C (2009). Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr Res, 29: 19-25

Amaqase H, Nance D. (2011) Lycium barbarum increases caloric expenditure and decreases waist circumference in healthy overweight men and women: a pilot study. J Am Coll Nutr 30(5):304-9

Amaqase H, Sun B, Borek C. (2009) Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr Res. 29(1):19-25

Andres E, Molinari J, Peterszegi G, Mariko B, Ruszova E, Velebny V, et al. (2006). Pharmacological properties of rhamnose-rich polysaccharides, potential interest in age-dependent alterations of connectives tissues. Pathol Biol (Paris), 54: 420-425

Ashoori M, Saedisomeolia A (2014). Riboflavin Vitamin B2 and oxidative stress: a review. Br J Nutr, 111: 1985-1991

Aw D, Silva AB, Palmer DB (2007). Immunosenescence: emerging challenges for an ageing population. Immunology, 120: 435-446

Bastianetto S, Quirion R (2002). Natural extracts as possible protective agents of brain aging. Neurobiol Aging, 23: 891-897

Berendschot TT, Broekmans WM, Klopping-Ketelaars IA, Kardinaal AF, Van Poppel G, Van Norren D (2002). Lens aging in relation to nutritional determinants and possible risk factors for age-related cataract. Arch Ophthalmol, 120: 1732-1737

Biard C, Hardy C, Motreuil S, Moreau J (2009). Dynamics of PHA-induced immune response and plasma carotenoids in birds: should we have a closer look? J Exp Biol, 212: 1336-1343

Bo R, Ma X, Feng Y, Zhu Q, Huang Y, Liu Z, et al. (2015). Optimization on conditions of Lycium barbarum polysaccharides liposome by RSM and its effects on the peritoneal macrophages function. Carbohydr Polym, 117: 215-222

Bo R, Zheng S, Xing J, Luo L, Niu Y, Huang Y, et al. (2016). The immunological activity of Lycium barbarum polysaccharides liposome in vitro and adjuvanticity against PCV2 in vivo. Int J Biol Macromol, 85: 294-301

Bosio GN, Breitenbach T, Parisi J, Reigosa M, Blaikie FH, Pedersen BW, et al. (2013). Antioxidant beta-carotene does not quench singlet oxygen in mammalian cells. J Am Chem Soc, 135: 272-279

Brubaker AL, Palmer JL, Kovacs EJ (2011). Age-related Dysregulation of Inflammation and Innate Immunity: Lessons Learned from Rodent Models. Aging Dis, 2: 346-360

Coban J, Bingul I, Yesil-Mizrak K, Dogru-Abbasoglu S, Oztezcan S, Uysal M (2013). Effects of carnosine plus vitamin E and betaine treatments on oxidative stress in some tissues of aged rats. Curr Aging Sci, 6: 199-205

Cui B, Liu S, Lin X, Wang J, Li S, Wang Q, et al. (2011). Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue. Molecules, 16: 9116-9128

Deng HB, Cui DP, Jiang JM, Feng YC, Cai NS, Li DD (2003). Inhibiting effects of Achyranthes bidentata polysaccharide and Lycium barbarum polysaccharide on nonenzyme glycation in D-galactose induced mouse aging model. Biomed Environ Sci, 16: 267-275

D'Onofrio N, Servillo L, Giovane A, Casale R, Vitiello M, Marfella R, et al. (2016). Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6. Free Radic Biol Med, 96: 211-222

Forino M, Tartaglione L, Dell'Aversano C, Ciminiello P (2016). NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries. Food Chem, 194: 1254-1259

Gao Y., Yifo W., Yuqing W., Fang G., Zhigang C. Lycium barbarum: a traditional Chinese herb and a promising anti-aging agent. Aging and Disease. 2017;8(6):778-791. doi: 10.14336/AD.2017.0725.

Go EK, Jung KJ, Kim JM, Lim H, Lim HK, Yu BP, et al. (2007). Betaine modulates age-related NF-kappaB by thiol-enhancing action. Biol Pharm Bull, 30: 2244-2249

Go EK, Jung KJ, Kim JY, Yu BP, Chung HY (2005). Betaine suppresses proinflammatory signaling during aging: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinases. J Gerontol A Biol Sci Med Sci, 60: 1252-1264 [PubMed]

Habtemariam S (2017). Protective Effects of Caffeic Acid and the Alzheimer's Brain: An Update. Mini Rev Med Chem, 17: 667-674

Harman D (2003). The free radical theory of aging. Antioxid Redox Signal, 5: 557-561

He M, Pan H, Chang RC, So KF, Brecha NC, Pu M (2014). Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage. PLoS One, 9: e84800.

Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RC (2010). Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis, 19: 813-827

Hornick A, Lieb A, Vo NP, Rollinger JM, Stuppner H, Prast H (2011). The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic- and age-impaired memory. Neuroscience, 197: 280-292

Huang D, Ou B, Prior RL (2005). The chemistry behind antioxidant capacity assays. J Agric Food Chem, 53: 1841-1856

Huang J, Vieira A (2006). DNA methylation, riboswitches, and transcription factor activity: fundamental mechanisms of gene-nutrient interactions involving vitamins. Mol Biol Rep, 33: 253-256

Huang Y, Lu J, Shen Y, Lu J (1999). The protective effects of total flavonoids from Lycium Barbarum L. on lipid peroxidation of liver mitochondria and red blood cell in rats. Wei Sheng Yan Jiu, 28: 115-116

Huyan T, Li Q, Yang H, Jin ML, Zhang MJ, Ye LJ, et al. (2014). Protective effect of polysaccharides on simulated microgravity-induced functional inhibition of human NK cells. Carbohydr Polym, 101: 819-827

Chang IM (2001). Anti-aging and health-promoting constituents derived from traditional oriental herbal remedies: information retrieval using the TradiMed 2000 DB. Ann N Y Acad Sci, 928: 281-286

Chang RC, So KF (2008). Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far? Cell Mol Neurobiol, 28: 643-652

Chen Z, Kwong Huat Tan B, Chan SH (2008). Activation of T lymphocytes by polysaccharide-protein complex from Lycium barbarum L. Int Immunopharmacol, 8: 1663-1671

Chen Z, Lu J, Srinivasan N, Tan BK, Chan SH (2009). Polysaccharide-protein complex from Lycium barbarum L. is a novel stimulus of dendritic cell immunogenicity. J Immunol, 182: 3503-3509

Chen Z, Soo MY, Srinivasan N, Tan BK, Chan SH (2009). Activation of macrophages by polysaccharide-protein complex from Lycium barbarum L. Phytother Res, 23: 1116-1122

Cheng J, Zhou ZW, Sheng HP, He LJ, Fan XW, He ZX, et al. (2015). An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Des Devel Ther, 9: 33-78

Im AR, Lee HJ, Youn UJ, Hyun JW, Chae S (2016). Orally administered betaine reduces photodamage caused by UVB irradiation through the regulation of matrix metalloproteinase-9 activity in hairless mice. Mol Med Rep, 13: 823-828

Imai S, Murata T, Fujioka S, Goto M (1963). Isolation of Beta-Sitosterol-Beta-Dglucoside from the Leaves of Lycium Chinense Mill. Yakugaku Zasshi, 83: 1092.

Iwanaga K, Hasegawa T, Hultquist DE, Harada H, Yoshikawa Y, Yanamadala S, et al. (2007). Riboflavin-mediated reduction of oxidant injury, rejection, and vasculopathy after cardiac allotransplantation. Transplantation, 83: 747-753

Kim DH, Sung B, Kang YJ, Jang JY, Hwang SY, Lee Y, et al. (2014). Anti-inflammatory effects of betaine on AOM/DSSinduced colon tumorigenesis in ICR male mice. Int J Oncol, 45: 1250-1256

Kim SY, Choi YH, Huh H, Kim J, Kim YC, Lee HS (1997). New antihepatotoxic cerebroside from Lycium chinense fruits. J Nat Prod, 60: 274-276

Kim SY, Lee EJ, Kim HP, Kim YC, Moon A, Kim YC (1999). A novel cerebroside from lycii fructus preserves the hepatic glutathione redox system in primary cultures of rat hepatocytes. Biol Pharm Bull, 22: 873-875

Konopacka M, Rogolinski J (2004). Thiamine prevents X-ray induction of genetic changes in human lymphocytes in vitro. Acta Biochim Pol, 51: 839-843

Kou L, Du M, Zhang C, Dai Z, Li X, Zhang B (2017). The Hypoglycemic, Hypolipidemic, and Anti-Diabetic Nephritic Activities of Zeaxanthin in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. Appl Biochem Biotechnol,182: 944-955

Kumar R, Burns EA (2008). Age-related decline in immunity: implications for vaccine responsiveness. Expert Rev Vaccines, 7: 467-479

Lee EK, Jang EJ, Jung KJ, Kim DH, Yu BP, Chung HY (2013). Betaine attenuates lysophosphatidylcholine-mediated adhesion molecules in aged rat aorta: modulation of the nuclear factor-kappaB pathway. Exp Gerontol, 48: 517-524

Lee I (2015). Betaine is a positive regulator of mitochondrial respiration. Biochem Biophys Res Commun, 456: 621-625

Li H, Li Z, Peng L (2017). Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage. Free Radic Res, 51: 200-210.

Li H, Liu X, Yang H, Zhu L (2007). Effects of Lycium barbarum on the behavior, body weight and TNF-alpha level of rat treated with binding. Wei Sheng Yan Jiu, 36: 743-745

Li XM, Ma YL, Liu XJ (2007). Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. J Ethnopharmacol, 111: 504-511

Lin CL, Wang CC, Chang SC, Inbaraj BS, Chen BH (2009). Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. Int J Biol Macromol, 45: 146-151

Lin WS, Chen JY, Wang JC, Chen LY, Lin CH, Hsieh TR, et al. (2014). The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice. Age (Dordr), 36: 689-703

Linnane AW, Eastwood H (2006). Cellular redox regulation and prooxidant signaling systems: a new perspective on the free radical theory of aging. Ann N Y Acad Sci, 1067: 47-55

Liu XL, Sun JY, Li HY, Zhang L, Qian BC (2000). Extraction and isolation of active component for inhibiting PC3 cell proliferation in vitro from the fruit of Lycium barbarum L. Zhongguo Zhong Yao Za Zhi, 25: 481-483

Luo Q, Cai Y, Yan J, Sun M, Corke H (2004). Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci, 76: 137-149

Manikandan R, Thiagarajan R, Goutham G, Arumugam M, Beulaja M, Rastrelli L, et al. (2016). Zeaxanthin and ocular health, from bench to bedside. Fitoterapia, 109: 58-66

McDevitt TM, Tchao R, Harrison EH, Morel DW (2005). Carotenoids normally present in serum inhibit proliferation and induce differentiation of a human monocyte/macrophage cell line (U937). J Nutr, 135: 160-164

Mocan A, Vlase L, Vodnar DC, Bischin C, Hanganu D, Gheldiu AM, et al. (2014). Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules, 19: 10056-10073 [PMC free article]

Molnar P, Pfander H, Olah P, Deli J, Toth G, Szabo LG (2003). The carotenoid composition of the fruits of box-thorn (Lycium barbarum L.) of Chinese and Hungarian origin. Olaj Szappan Kozmetika Hungary, 522: 50-55

Muto Y, Fujii J, Shidoji Y, Moriwaki H, Kawaguchi T, Noda T (1995). Growth retardation in human cervical dysplasia-derived cell lines by beta-carotene through down-regulation of epidermal growth factor receptor. Am J Clin Nutr, 62: 1535S-1540S

Niu AJ, Wu JM, Yu DH, Wang R (2008). Protective effect of Lycium barbarum polysaccharides on oxidative damage in skeletal muscle of exhaustive exercise rats. Int J Biol Macromol, 42: 447-449

Olson JA (1993). Molecular actions of carotenoids. Ann N Y Acad Sci, 691: 156.

Pei K, Ou J, Huang J, Ou S (2016). p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric, 96: 2952-2962

Philippe D, Brahmbhatt V, Foata F, Saudan Y, Serrant P, Blum S, Benyacoub J, Vidal K. (2012) Anti-inflammatory effects of Lacto-Wolfberry in a mouse model of experimental colitis. World J Gastroenterol 18(38):5351-9

Piao M, Murata Y, Zhu B, Shimoishi Y, Tada M (2005). Changes in Carotenoid Content and its Composition during Maturation of Fructus lycii Fruits. Japanese Journal of Food Chemistry, 12: 35-39

Potterat O (2010). Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med, 76: 7-19 [PubMed]

Qi B, Ji Q, Wen Y, Liu L, Guo X, Hou G, et al. (2014). Lycium barbarum polysaccharides protect human lens epithelial cells against oxidative stress-induced apoptosis and senescence. PLoS One, 9: e110275.

Ren B, Ma Y, Shen Y, Gao B (1995). Protective action of Lycium barbarum L. (LbL) and betaine on lipid peroxidation of erythrocyte membrane induced by H2O2. Zhongguo Zhong Yao Za Zhi, 20: 303-304, inside cover

Ribaya-Mercado JD, Blumberg JB (2004). Lutein and zeaxanthin and their potential roles in disease prevention. J Am Coll Nutr, 23: 567S-587S

Ryokkynen A, Nieminen P, Mustonen AM, Pyykonen T, Asikainen J, Hanninen S, et al. (2005). Phytoestrogens alter the reproductive organ development in the mink (Mustela vison). Toxicol Appl Pharmacol, 202: 132-139

Sharma S, Ali A, Ali J, Sahni JK, Baboota S (2013). Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs, 22: 1063-1079

Shi C, Luo X, Wang J, Long D (2015). Incorporation of beta-sitosterol into the membrane prevents tumor necrosis factor-alpha-induced nuclear factor-kappaB activation and gonadotropin-releasing hormone decline. Steroids, 96: 1-6

Schmid U, Stopper H, Heidland A, Schupp N (2008). Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab Res Rev, 24: 371-377

Sparks JD, Collins HL, Chirieac DV, Cianci J, Jokinen J, Sowden MP, et al. (2006). Hepatic very-low-density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methyltransferase. Biochem J, 395: 363-371

Stirban A, Negrean M, Stratmann B, Gawlowski T, Horstmann T, Gotting C, et al. (2006). Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care, 29: 2064-2071

Su CX, Duan XG, Liang LJ, Feng W, Zheng J, Fu XY, et al. (2014). Lycium barbarum polysaccharides as an adjuvant for recombinant vaccine through enhancement of humoral immunity by activating Tfh cells. Vet Immunol Immunopathol, 158: 98-104

Tamura M, Suzuki H, Itoh K (1998). Effect of beta-sitosterol on ultrastructure of liver cells in young and aged mice. Int J Vitam Nutr Res, 68: 146-148

Tang L, Zhang Y, Jiang Y, Willard L, Ortiz E, Wark L, et al. (2011). Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Exp Biol Med (Maywood), 236: 1051-1063 [PMC free article]

Tang T, He B (2013). Treatment of d-galactose induced mouse aging with Lycium barbarum polysaccharides and its mechanism study. Afr J Tradit Complement Altern Med, 10: 12-17

Tang WM, Chan E, Kwok CY, Lee YK, Wu JH, Wan CW, et al. (2012). A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology, 20: 307-314

Thornalley PJ (2005). The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diabetes Rev, 1: 287-298

Thuong PT, Hung TM, Ngoc TM, Ha do T, Min BS, Kwack SJ, et al. (2010). Antioxidant activities of coumarins from Korean medicinal plants and their structure-activity relationships. Phytother Res, 24: 101-106

Toyada-Ono Y, Maeda M, Nakao M, Yoshimura M, Sugiura-Tomimori N, Fukami H, et al. (2005). A novel vitamin C analog, 2-O-(beta-D-Glucopyranosyl) ascorbic acid: examination of enzymatic synthesis and biological activity. J Biosci Bioeng, 99: 361-365

Toyoda-Ono Y, Maeda M, Nakao M, Yoshimura M, Sugiura-Tomimori N, Fukami H (2004). 2-O-(beta-D-Glucopyranosyl) ascorbic acid, a novel ascorbic acid analogue isolated from Lycium fruit. J Agric Food Chem, 52: 2092-2096

Tuan PA, Zhao S, Kim JK, Kim YB, Yang J, Li CH, et al. (2014). Riboflavin accumulation and molecular characterization of cDNAs encoding bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase, lumazine synthase, and riboflavin synthase in different organs of Lycium chinense plant. Molecules, 19: 17141-17153

Ulbricht C, Bryan J, Costa D, Culwell S, Gises N, Isaac R, Nummy K, Pham T, Rapp C, Ruise E, Weissner W, Windsor R, Woods J, Zhou S. (2015) An Research Findings-based systematic review of goji (Lycium spp.) by the Natural Standard Research Collaboration. J Diet Suppl. 12(2):184-240

van Rensburg SJ, Daniels WM, van Zyl JM, Taljaard JJ (2000). A comparative study of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, dehydroepiandrosterone sulphate and melatonin on in vitro lipid peroxidation. Metab Brain Dis, 15: 257-265

Wang W, Mani AM, Wu ZH (2017). DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. J Cancer Metastasis Treat, 3:45-59.

Wang Y, Zhao H, Sheng X, Gambino PE, Costello B, Bojanowski K (2002). Protective effect of Fructus Lycii polysaccharides against time and hyperthermia-induced damage in cultured seminiferous epithelium. J Ethnopharmacol, 82: 169-175

Wu BY, Zou JH, Meng SC (2003). Effect of wolfberry fruit and epimedium on DNA synthesis of the aging-youth 2BS fusion cells. Zhongguo Zhong Xi Yi Jie He Za Zhi, 23: 926-928

Wu CX, Wang TF, Yu JQ (2015). Lycium barbarum Polysaccharide Pretreatment Attenuates Cerebral Ischemic Reperfusion Injury by Inhibiting Apoptosis in Mice. Zhong Yao Cai, 38: 1454-1459

Wu H, Guo H, Zhao R (2006). Effect of Lycium barbarum polysaccharide on the improvement of antioxidant ability and DNA damage in NIDDM rats. Yakugaku Zasshi, 126: 365-371

Wu SJ, Ng LT, Lin CC (2004). Antioxidant activities of some common ingredients of traditional chinese medicine, Angelica sinensis, Lycium barbarum and Poria cocos. Phytother Res, 18: 1008-1012

Xia G, Xin N, Liu W, Yao H, Hou Y, Qi J (2014). Inhibitory effect of Lycium barbarum polysaccharides on cell apoptosis and senescence is potentially mediated by the p53 signaling pathway. Mol Med Rep, 9: 1237-1241

Yang IJ, Lee DU, Shin HM (2015). Anti-inflammatory and antioxidant effects of coumarins isolated from Foeniculum vulgare in lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol Immunotoxicol, 37: 308-317

Yang Y, Li W, Li Y, Wang Q, Gao L, Zhao J (2014). Dietary Lycium barbarum polysaccharide induces Nrf2/ARE pathway and ameliorates insulin resistance induced by high-fat via activation of PI3K/AKT signaling. Oxid Med Cell Longev, 2014: 145641

Yi R, Liu XM, Dong Q (2013). A study of Lycium barbarum polysaccharides (LBP) extraction technology and its anti-aging effect. Afr J Tradit Complement Altern Med, 10: 171-174

Yuan LG, Deng HB, Chen LH, Li DD, He QY (2008). Reversal of apoptotic resistance by Lycium barbarum glycopeptide 3 in aged T cells. Biomed Environ Sci, 21: 212-217

Zhang L, Gu J, Chen Y, Zhang L (2013). A study on four antioxidation effects of lycium barbarum polysaccharides in vitro. Afr J Tradit Complement Altern Med, 10: 494-498

Zhang XR, Zhou WX, Zhang YX, Qi CH, Yan H, Wang ZF, et al. (2011). Macrophages, rather than T and B cells are principal immunostimulatory target cells of Lycium barbarum L. polysaccharide LBPF4-OL. J Ethnopharmacol, 136: 465-472

Zhang Z, Liu X, Wu T, Liu J, Zhang X, Yang X, et al. (2011). Selective suppression of cervical cancer Hela cells by 2-O-beta-D-glucopyranosyl-L-ascorbic acid isolated from the fruit of Lycium barbarum L. Cell Biol Toxicol, 27: 107-121

Zhang Z, Liu X, Zhang X, Liu J, Hao Y, Yang X, et al. (2011). Comparative evaluation of the antioxidant effects of the natural vitamin C analog 2-O-beta-D-glucopyranosyl-L-ascorbic acid isolated from Goji berry fruit. Arch Pharm Res, 34: 801-810

Zhao BT, Jeong SY, Hwangbo K, Moon DC, Seo EK, Lee D, et al. (2013). Quantitative analysis of betaine in Lycii Fructus by HILIC-ELSD. Arch Pharm Res, 36: 1231-1237

Zhou X, Xu G, Wang Q (1996). Chemical constituents in the roots of Lycium chinense Mill. Zhongguo Zhong Yao Za Zhi, 21: 675-676, 704

Zhu J, Zhang Y, Shen Y, Zhou H, Yu X (2013). Lycium barbarum polysaccharides induce Toll-like receptor 2- and 4-mediated phenotypic and functional maturation of murine dendritic cells via activation of NF-kappaB. Mol Med Rep, 8: 1216-1220

Zhu J, Zhao LH, Zhao XP, Chen Z (2007). Lycium barbarum polysaccharides regulate phenotypic and functional maturation of murine dendritic cells. Cell Biol Int, 31: 615-619

Zhu S, Coffman JA (2017). Simple and fast quantification of DNA damage by real-time PCR, and its application to nuclear and mitochondrial DNA from multiple tissues of aging zebrafish. BMC Res Notes, 10: 269.

Zou S, Meadows S, Sharp L, Jan LY, Jan YN (2000). Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci U S A, 97: 13726-13731